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PLANE PROBLEM OF VIBRATIONS

OF AN ELASTIC FLOATING PLATE

UNDER PERIODIC EXTERNAL LOADING

UDC 532.59:539.3:534.1L. A. Tkacheva

The Wiener–Hopf technique is used to construct an analytical solution of the problem of vibrations of a
semi-infinite elastic floating plate under periodic external loading. The solution is obtained in explicit
form ignoring draft. The dependences of the amplitudes of surface waves and ice-plate deflection on
the loading distribution and frequency, ice thickness, and liquid depth are studied numerically. It is
established that for some types of acting load, no waves propagate in the plate and liquid and the
plate vibrations are standing waves localized near the loading region. An example of such vibrations
is given and a condition for the occurrence of localized vibrations is found.

Key words: surface waves, flexural-gravity waves, elastic thin plate, Wiener–Hopf technique,
localized vibrations.

At present, the problem of the hydroelastic behavior of a plate floating on a liquid surface is of interest
in connection with the design of floating platforms of various applications: artificial islands, airdromes, launching
sites, etc. The huge dimensions of such objects prevents fulfillment of similarity criteria in experimental studies;
therefore, numerical modeling plays an important role is studies of such objects.

The diffraction of surface waves on a floating elastic plate has been studied fairly well. The dynamics of an
infinite floating plate under external loading has also been examined in detail using integral transformations (see,
e.g., [1–3]). However, the behavior of a floating elastic finite plate under dynamic loading has been investigated
inadequately. Numerical solutions of these problems in plane and three-dimensional formulations were constructed
using an expansion in normal modes and the Galerkin or Rayleigh–Ritz methods [4–7]. In the present paper, an
analytical solution of the present problem for a semi-infinite plate is constructed using the Wiener–Hopf technique.

1. Formulation of the Problem. It is assumed that the liquid is ideal and incompressible of depth H0

and that its flow is irrotational. The examined plate has constant thickness h and its vibrations are caused by a
time-periodic external pressure applied to the plate surface. The problem is solved in a plane formulation. The plate
edge is the origin of Cartesian coordinates Oxy. The plate covers the liquid surface at x > 0, and the remaining
part of the liquid surface is free. It is assumed that the plate thickness is much smaller than the length of the waves
propagating in the plate. A thin plate model is used.

The liquid-velocity potential ϕ satisfies the Laplace equation and the boundary conditions

∆ϕ = 0 (−H0 < y < 0),

ϕy = 0 (y = −H0), ϕy = wt (y = 0),

D
∂4w

∂x4
+ ρ0h

∂2w

∂t2
= p + q(x) e−iωt (y = 0, x > 0),

(1.1)

p = −ρ(ϕt + gw), ϕt + gw = 0 (y = 0, x < 0).
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Here w is the vertical displacement of the upper liquid surface (plate), p is the hydrodynamic pressure, q(x) is the
external loading intensity, g is the acceleration due to gravity, D is the cylindrical stiffness of the plate, ρ and ρ0 are
the densities of the liquid and plate, and t is time. On the plate edge, the moment and the shear force should be
equal to zero:

∂2w

∂x2
=

∂3w

∂x3
= 0 (y = 0, x = 0). (1.2)

We first consider the case of a concentrated load: q(x) = q0δ(x−x0). The time dependences of all functions
are expressed in terms of the factor e−iωt. We introduce the characteristic length l = g/ω2 and the dimensionless
variables

x′ = x/l, y′ = y/l, ϕ′ = ϕωρ/q0, w′ = wρg/q0, t′ = ωt.

Below, the primes are omitted. The potential is represented as ϕ = φ e−it. Then from (1.1) and (1.2), we obtain
the following boundary-value problem for φ:

∂2φ

∂x2
+

∂2φ

∂y2
= 0 (−H < y < 0);

∂φ

∂y
= 0 (y = −H); (1.3)

∂φ

∂y
− φ = 0 (y = 0, x < 0); (1.4)

(
β

∂4

∂x4
+ 1− δ

)∂φ

∂y
− φ = −iδ(x− x∗) (y = 0, x > 0); (1.5)

∂2

∂x2

∂φ

∂y
=

∂3

∂x3

∂φ

∂y
= 0 (y = 0, x = 0); (1.6)

H = H0/l, β = D/(ρgl4), x∗ = x0/l, δ = ρ0h/(ρl).

The dimensionless parameters of the problem are as follows: the liquid depth H, the point of application of the
external load x∗, the normalized stiffness β, and the normalized mass per length of the plate δ. In addition, the
radiation conditions for |x| → ∞ and the regularity condition near the edge (local boundedness of energy) should
be satisfied.

2. Integral Equations. The problem is solved using the Wiener–Hopf technique in the Jones interpreta-
tion [8]. We introduce the following functions of the complex variable α:

Φ+(α, y) =

∞∫
0

eiαx φ(x, y) dx, Φ−(α, y) =

0∫
−∞

eiαx φ(x, y) dx,

Φ(α, y) = Φ−(α, y) + Φ+(α, y).
(2.1)

The function Φ+(α, y) is defined in the upper half plane Im α > 0, and the function Φ−(α, y) in the lower semiplane
Im α < 0. By means of analytic continuation, these functions can be defined in the entire complex plane. The
function Φ(α, y) is a Fourier image for the function φ(x, y) and satisfies the equation ∂2Φ/∂y2 − α2Φ = 0. The
general solution of this equation subject to the condition at the bottom (1.3) has the form

Φ(α, y) = C(α) cosh (α(y + H))/ cosh (αH). (2.2)

We consider dispersion relations for surface and flexural-gravity waves in a liquid of finite depth. The
periodic solutions of the Laplace equation subject to the condition at the bottom (1.3) has the form eiαx cosh (α(y
+ H))/ cosh (αH). For surface waves, the values of α should satisfy the dispersion relation

K1(α) ≡ α tanh (αH)− 1 = 0,

which has two real roots ±γ, and an countable set of purely imaginary roots ±γn (n = 1, 2, . . .) symmetric about
the real axis [9]; γn → inπ/H as n →∞.
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For the waves propagating in the liquid under the plate (flexural-gravity waves), we obtain the dispersion
relation

K2(α) ≡ (βα4 + 1− δ)α tanh (αH)− 1 = 0,

which has two real roots ±α0, and an countable set of purely imaginary roots ±αn (n = 1, 2, . . .) symmetric about
the real axis, and four complex roots symmetric about the real and imaginary axes [9]. We denote the root lying in
the first quadrant by α−1 and the root in the second quadrant by α−2, αn → inπ/H as n →∞.

The dispersion functions K1(α) and K2(α) are even. The real roots of the dispersion relations define
propagating waves and the remaining roots define edge waves, which decay exponentially away from the plate edge.

Let us examine the behavior of the functions Φ±(α, y). For x → −∞, the potential is a wave of the form
R e−iγx and a set of exponentially decaying waves. The least rapidly decaying wave corresponds to the root γ1.
Therefore, Φ−(α, y) is analytic in the semiplane Im α < |γ1|, except for the pole at α = −γ. For x → ∞, the
potential ϕ1 is a propagating wave of the form T eiα0x and a set of exponentially decaying modes. Therefore,
the function Φ+(α, y) is analytic in the semiplane Im α > −c, except for the pole at the point α = α0, where
c = min {|α1|, Im (α−1)}.

Let D±(α) designate integrals of the form (2.1) with the integrand function φ replaced by the left side of
boundary condition (1.4), and let F±(α) designate similar expressions in which the integrand is the left side of
expression (1.5). We introduce the functions

D(α) = D−(α) + D+(α), F (α) = F−(α) + F+(α).

The functions D(α) and F (α) are Fourier transforms of the dispersion functions, which have the meaning of
generalized functions [10]. For them, the following relations hold:

D(α) = C(α)K1(α), F (α) = C(α)K2(α).

From boundary conditions (1.4) and (1.5), we have

D−(α) = 0, D+(α) = C(α)K1(α),

F+(α) = −i eiαx∗ , F−(α)− i eiαx∗ = C(α)K2(α).
(2.3)

Elimination of C(α) yields the equation

(F−(α)− i eiαx∗)K(α) = D+(α), K(α) = K1(α)/K2(α). (2.4)

According to the Wiener–Hopf technique, it is necessary to factorize the function K(α), i.e., to represent it
as

K(α) = K+(α)K−(α),

where the functions K±(α) are regular in the same regions as the functions Φ±(α, y). The function K(α) has
zeros and poles at the points ±γ and ±α0, respectively, on the real axis. We therefore consider the analyticity
regions S+ and S− (S+ is the semiplane Im α > −c with cuts eliminating the points α0 and γ and S− is the
semiplane Im α < |γ1| with cuts eliminating the points −α0 and −γ).

We introduce the function

g(α) = K(α)β(α2 − α2
0)(α

2 − α2
−1)(α

2 − α2
−2)/(α2 − γ2).

The function g(α) on the real axis has no zeros, is bounded, and tends to unity at infinity. We factorize g(α) as
follows [8]:

g(α) = g+(α)g−(α), g±(α) = exp
[
± 1

2πi

∞∓iσ∫
−∞∓iσ

ln g(x)
x− α

dx
]
, σ < |γ1|, c.

The functions K±(α) are defined by

K±(α) =
(α± γ)g±(α)√

β(α± α0)(α± α−1)(α± α−2)
.

In this case, K+(α) = K−(−α).
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Using the representation

eiαx∗ K−(α) = L+(α) + L−(α), L±(α) = ± 1
2πi

∞∓iσ∫
−∞∓iσ

eiζx∗ K−(ζ) dζ

ζ − α
, σ < |γ1|, c, (2.5)

we write Eq. (2.4) as

K−(α)F−(α)− iL−(α) = D+(α)/K+(α) + iL+(α).

The left side of this equality contains a function analytic in the regions S−, and the right side a function analytic
in S+. An analytic continuation of these functions gives a function analytic over the entire complex plane. According
to Liouville’s theorem, this function is a polynomial. The polynomial degree is determined by the behavior of the
functions as |α| → ∞.

The condition of local boundedness of energy implies that near the plate edge, the velocities have a singularity
not higher than O(r−λ) (λ < 1; r is the distance to the plate edge). Then, for |α| → ∞, the function F−(α) has order
not higher than O(|α|λ+3) and the order of D+(α) is not higher than O(|α|λ−1) [10]. At infinity, the functions K±(α)
have order O(|α|−2) since g±(α) → 1 as |α| → ∞. It is easy to show that |L±(α)| = O(|α|−1) for |α| → ∞. Hence,
the polynomial degree is equal to unity and

D+(α)/K+(α) + iL+(α) = i(a + bα),

where a and b are unknown constants, which should be determined from conditions (1.6).
Expressing D+(α) from the last equation and taking into account (2.2) and (2.3), we obtain

ϕ(x, y) = − 1
2πi

∞∫
−∞

e−iαx cosh (α(y + H))K+(α)
cosh (αH)K1(α)

(
a + bα− L+(α)

)
dα. (2.6)

The contour of integration should be chosen so that it entirely lies in the intersection of the regions S+ and S−.
The contour of integration on the real axis can be chosen so as to bypass the points α0 and γ from below and the
points −α0 and −γ from above.

Let us consider the case x > 0. The integral is calculated using residue theory. Expression (2.6) is written
as

ϕ(x, y) = − 1
2πi

∞∫
−∞

e−iαx cosh (α(y + H))
K−(α)K2(α) cosh (αH)

(
a + bα + L−(α)

)
dα +

1
2πi

∞∫
−∞

e−iα(x−x∗) cosh (α(y + H)) dα

K2(α) cosh (αH)
. (2.7)

For the first integral, the contour of integration is closed in the lower semiplane, and for the second integral, it is
closed in the upper half plane. For x > 0, we obtain

∂ϕ

∂y
(x, 0) =

∞∑
j=−2

eiαjx αj tanh (αjH)
K−(−αj)K ′

2(−αj)

(
a− bαj + L−(−αj)

)
+

∞∑
j=−2

eiαj |x−x∗| αj tanh (αjH)
K ′

2(αj)
. (2.8)

From the dispersion relation for the region under the plate, we have

αj tanh (αjH) = −K1(αj)/(βα4
j − δ).

Substitution of this expression into formula (2.8) and then into boundary conditions (1.6) yields the following system
of second-order linear algebraic equations for the unknowns a and b:(

A11 A12

A21 A22

) (
a

b

)
=

(
C1

C2

)
. (2.9)

According to the residue theorem, the coefficients of the system can be written as

A11 =
4∑

k=1

reszk

(α2K+(α)
βα4 − δ

)
, A12 = A21,

A21 =
4∑

k=1

reszk

(α3K+(α)
βα4 − δ

)
, A22 =

4∑
k=1

reszk

(α4K+(α)
βα4 − δ

)
,

423



C1 = −
4∑

k=1

reszk

(α2K+(α)L−(α)
βα4 − δ

)
, C2 = −

4∑
k=1

reszk

(α3K+(α)L−(α)
βα4 − δ

)
,

where zk are the roots of the polynomial βα4 − δ = 0. From (2.5), we obtain

L−(α) = −
∞∑

j=−2

eiαjx∗ K1(αj)
K ′

2(αj)K+(αj)(αj − α)
.

The coefficients of the system are converted as follows:

A11 =
4∑

k=1

K+(zk)
zk

, A12 = A21 =
4∑

k=1

K+(zk), A22 =
4∑

k=1

zkK+(zk),

C1 = −
4∑

k=1

K+(zk)L−(zk)
zk

, C2 = −
4∑

k=1

K+(zk)L−(zk).

Determining the coefficients a and b from system (2.9) and substituting them into formulas (2.6) and (2.7), we find
all the desired quantities. For the amplitude of elevation of the free boundary at infinity η∞,

η∞ =
∣∣∣K+(γ)
K ′

1(γ)
[(a + bγ − L+(γ)]

∣∣∣. (2.10)

From (1.1), the amplitude of plate deflection is defined by the relation |w(x)| = |ϕy(x, 0)| and expression (2.8). In
expression (2.8), the second term represents the waves propagating from the load application point and coincides
with the deflection of an infinite plate and the first term represents the waves reflected from the edge. The amplitude
of the plate deflection at infinity is calculated by the formula

w∞ =
α0 tanh (α0H)

K ′
2(α0)

∣∣∣e−iαjx∗ −a− bα0 + L−(−α0)
K+(α0)

∣∣∣.
3. Solution Ignoring the Draft. According to the above assumptions, δ � 1; therefore, in Eq. (1.5), the

parameter δ can be neglected. As δ → 0, we have

A11 = K ′
+(0), A12 = A21 = K+(0), A22 = 0,

C1 = −(K+(0)L−(0))′, C2 = −K+(0)L−(0).

Then, we obtain

a = −L−(0) =
∞∑

j=−2

eiαjx∗ K1(αj)
K ′

2(αj)K+(αj)αj
, b = −L′−(0) =

∞∑
j=−2

eiαjx∗ K1(αj)
K ′

2(αj)K+(αj)α2
j

.

Substituting the coefficients a and b into (2.10) and using the relation

|K+(γ)| =

√
2γ(γ − α0)|K ′

1(γ)|
(γ + α0)|K2(γ)|

,

we obtain

η∞ =

√
2γ(γ − α0)

(γ + α0)βK ′
1(γ)

∣∣∣ ∞∑
j=−2

eiαjx∗ K1(αj)
K ′

2(αj)K+(αj)α2
j (αj − γ)

∣∣∣.
From (2.8), we have

w(x) = i
∞∑

j=−2

αj tanh (αjH)
K ′

2(αj)

[
eiαj |x−x∗| +

α2
j eiαjx

K+(αj)

∞∑
n=−2

eiαnx∗ K1(αn)
K ′

2(αn)K+(αn)α2
n(αn + αj)

]
.

We next consider the case of a distributed load. Let the plate subjected to a time-periodic pressure of
intensity q(x), x ∈ [x1, x2]. In this case, multiplying the solution obtained by q(x∗) and integrating over x∗, we find

η∞ =

√
2γ(γ − α0)

(γ + α0)βK ′
1(γ)

∣∣∣ ∞∑
j=−2

AjK1(αj)
K ′

2(αj)K+(αj)α2
j (αj − γ)

∣∣∣,
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w(x) = i
∞∑

j=−2

αj tanh (αjH)
K ′

2(αj)

[
Bj(x) +

α2
j eiαjx

K+(αj)

∞∑
n=−2

AnK1(αn)
K ′

2(αn)K+(αn)α2
n(αn + αj)

]
,

Bj(x) =

x2∫
x1

eiαj |x−x∗| q(x∗) dx∗, Aj =

x2∫
x1

eiαjx∗ q(x∗) dx∗,

w∞ =
α0 tanh (α0H)

K ′
2(α0)

∣∣∣Ā0 +
α2

0

K+(α0)

∞∑
n=−2

AnK1(αn)
K ′

2(αn)K+(αn)α2
n(αn + α0)

∣∣∣
(the bar denotes complex conjugation).

4. Numerical Results. Calculations were performed for a semi-infinite ice plate in ocean for the following
parameters: E = 6 · 109 N/m2, ρ = 1025 kg/m3, and ρ0 = 922.5 kg/m3. The dependence of the external load on
the plate on x was given by

q(x) =
{

q0[1− (x− x0)2/d2], |x− x0| < d,

0, |x− x0| > d,

where d is the half-width of the pressure region and x0 is the center of load application. In this case,

Aj =
4

α2
jd

[ sin(αjd)
αjd

− cos(αjd)
]
.

The plate thickness, liquid depth, and the loading frequency, center, and area were varied.
The calculations showed that each of the above-mentioned parameters is important in the problem at hand.

Figure 1 shows the solution taking into account the draft (solid curves) and the solution ignoring it (dashed curves)
for H0 = 100 m, x0 = 20 m, d = 2 m, and h = 5 m. Curves 1 correspond to the amplitude of elevation of the free
surface at infinity η∞, curves 2 to the amplitude of plate deflection at the edge |w(0)|, curves 3 to the amplitude
at the center of load application |w(x0)|, and curves 4 to the amplitude of the outgoing wave in the plate w∞.
From Fig. 1 it follows that the parameter δ has a more significant effect on the amplitude of elevation of the free
surface at high frequencies than on the amplitude of plate deflection. The plate vibration amplitudes are small
under high-frequency external actions. Solutions in explicit form ignoring the draft can be used to estimate the
plate deflection.

The effect of liquid depth on the vibration amplitudes is significant for low depths and frequencies. As the
depth increases, the solution rapidly reaches the asymptotic form for an infinitely deep liquid, and then it is little
affected by depth variation. The effect of the liquid depth on the vibration amplitude is more significant for thick
plates. Figure 2 shows frequency dependences of the amplitudes of free-surface elevation at infinity (curves 1), plate
deflection at the edge (curves 2), plate deflection at the center of load application (curves 3), and the frequency
dependence of the amplitude of the outgoing wave in the plate at infinity (curves 4) for h = 1.5 m, x0 = 20 m, and
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d = 2 m. The solid curves correspond to a depth H0 = 100 m, dashed curves to H0 = 20 m, and dotted curves
to H0 = 1000 m. For depths H0 = 100 and 1000 m, the difference between the curves is small and is observed
only for small frequencies. From Figs. 1 and 2, it is evident that the vibration amplitudes of the free surface and
the plate depend nonmonotonically on the frequency. At a certain frequency, the amplitudes reach maxima and
then decrease as the frequency increase. The frequency corresponding to the maximum amplitude depends on all
parameters of the problem. In all calculations, it did not exceed 1 sec−1.

The maximum amplitudes of plate deflection are observed at the point of maximum load or at the plate
edge. Variation in the position of the center of load application on the plate can change their ratio. The plate
strain amplitudes are maximal at the center of load application. Figure 3 shows curves of the vibration amplitudes
of the liquid and the plate versus the position of the center of load application at ω = 0.5 sec−1, h = 1.5 m,
d = 2 m, and H0 = 100 m. The notation of the curves is same as in Figs. 1 and 2. Solid curves correspond to the
complete solution, and dashed to the solution ignoring draft. It is obvious that at large distances from the edge,
the amplitudes of the surface waves η∞ and the plate edge |w(0)| are stabilized, and the deflection amplitudes at
the center of load application |w(x0)| and at infinity w∞ vary under a harmonic law. This also follows from the
formulas obtained.

Figure 4 gives the plate deflection amplitudes, and Fig. 5 shows the dimensionless strain amplitudes |w′′(x)|
for ω = 0.5 sec−1, h = 1.5 m, d = 10 m, and H0 = 100 m for various positions of the center of loading [x0 = 20 (1),
50 (2), and 200 m (3)]. As the area of load application increases, the vibration amplitude of the liquid and the plate
vary nonmonotonically. The vibration level for the liquid and the plate is basically determined by the quantity |A0|.
Indeed, the quantity |A0| determines the amplitude of the wave propagating in the plate from the region of load
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application and the amplitude of the waves reflected from the edges. The dependence of |A0| on the area of load
application d for ω = 0.5 sec−1, h = 1.5 m, and H0 = 100 is presented in Fig. 6a. The vibration amplitudes of the
free surface, the plate at infinity, and at the plate edge vary in proportion to this quantity. If the region of load
application is away from the plate edges, then |Aj | � 1 for j 6= 0. Thus, if A0 = 0, the plate vibrations are same as
for an infinite plate: standing waves are concentrated near the region of load application, and the remaining part of
the plate and the liquid are nearly undisturbed. Figure 6b shows an example of such vibrations for ω = 0.5 sec−1,
h = 1.5 m, d = 180 m, H0 = 100 m, and x0 = 500 m. If A0 6= 0, waves reflected from the edges always exist. Thus,
the frequency and nature of the load-intensity distribution have a significant effect on the amplitudes of surface
waves and plate deflection.
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